Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

The absolute configuration of $(2 S, 4 S)$ and ($2 R, 4 R$)-2-tert-butyl-4-methyl-3-(4-tolylsulfonyl)-1,3-oxazolidine-4-carbaldehyde

Susanne Flock, Clemens Bruhn, Heinrich Fink and Herbert Frauenrath*

Institute for Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
Correspondence e-mail: frauenrath@uni-kassel.de

Received 7 December 2005
Accepted 10 January 2006
Online 31 January 2006
The title enantiomorphic compounds, $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$, have been obtained in an enantiomerically pure form by crystallization from a diastereomeric mixture either of $(2 S, 4 S)$ - and $(2 R, 4 S)$ or of ($2 R, 4 R$)- and ($2 S, 4 R$)-2-tert-butyl-4-methyl-3-(4-tolyl-sulfonyl)-1,3-oxazolidine-4-carbaldehyde. These mixtures were prepared by an aziridination rearrangement process starting with (S)- or (R)-2-tert-butyl-5-methyl-4H-1,3-dioxine. The crystal structures indicate an envelope conformation of the oxazolidine moiety for both compounds.

Comment

Aziridination of alkenes is an attractive process for the preparation of biologically active compounds (Tanner, 1994). Several aziridination methods are described in the literature, particularly for substituted alkenes (Evans et al., 1994). However, less is known about the aziridination of functionalized alkenes, for example, enol ethers and related compounds. Recently, we have investigated the aziridination of cyclic vinyl acetals. We found that these compounds undergo an in situ aziridination rearrangement process to give 1,3 -oxazolidine- 4 carbaldehydes (Flock \& Frauenrath, 2001). For example, treatment of (S)-(-)-2-tert-butyl-5-methyl-4H-1,3-dioxine (92% ee), prepared by $\mathrm{NiBr}_{2}[(-)$-Diop $] / \mathrm{LiBHEt}_{3}$-catalyzed isomerization of 2-tert-butyl-5-methylene-1,3-dioxane [Diop is 2,2-dimethyl-4,5-bis(diphenylphosphinomethyl)-1,3-dioxolane] (Frauenrath et al., 1998; Flock et al., 2005), with [N-(p-tolylsulfonyl)imino]phenyliodinane $(\mathrm{PhI}=\mathrm{NTs})$ in the presence of CuOTf benzene complex ($10 \mathrm{~mol} \%$; OTf is trifluoromethanesulfonate) led in a one-step procedure to a 70:30 mixture of ($2 S, 4 S$)- and ($2 R, 4 S$)-2-tert-butyl-4-methyl-3-(4-tolylsulfonyl)-1,3-oxazolidine-4-carbaldehyde (Flock, 2003). After purification of the crude reaction product and recrystallization from tert-butyl methyl ether, the major diastereomer, $(2 S, 4 S)$-(I), was obtained in a crystalline form.

For the determination of the optical purity by NMR spectroscopy, the crystalline solid was reacted with $(2 R, 3 R)$ -(-)-butanediol to give N-[1-(4,5-dimethyl-1,3-dioxolan-2-yl)-2-hydroxy-1-methylethyl]-4-methylbenzenesulfonamide, (III). Surprisingly, only one diastereomer could be detected in the NMR spectra of the crude reaction mixture, indicating that

(I)

(II)
the crystalline diastereomer, (I), was obtained in an enantiomerically pure form. The opposite enantiomer, $(2 R, 4 R)$-(II), was prepared by the same procedure from $(R)-(+)-2$-tert-butyl-5-methyl-4H-1,3-dioxine (91% ee). The latter compound was readily obtained by asymmetric double-bond isomerization of 2 -tert-butyl-5-methylene-1,3-dioxane using $\mathrm{NiBr}_{2}[(+)$-Diop $] / \mathrm{LiBHEt}_{3}$ as a catalyst (Flock et al., 2005). Compounds (I) and (II) are useful chiral building blocks, for example, for the synthesis of unnatural amino acids bearing a quaternary chiral center, and a knowledge of the absolute configuration of these compounds is important for gaining more insight into the diastereoselective course of the intermediate aziridination process. For this reason, the structures and absolute configurations of compounds (I) and (II) have been established by X-ray crystallography.

(III)

The molecular structures and correct absolute configurations, as confirmed by refinement of the absolute structure parameter (Flack, 1983), of compounds (I) and (II) are shown in Figs. 1 and 2, respectively. In both structures, the bond distances and angles agree with the expected values and no unusual intermolecular interactions could be found. For (I), the closest intermolecular contacts to neighboring molecules are $\mathrm{C} 4 \cdots \mathrm{C} 3^{\mathrm{i}}$ and $\mathrm{C} 5 \cdots \mathrm{O} 4^{\mathrm{ii}}[3.2369$ (16) and 3.2252 (19) \AA; symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $\left.x+\frac{1}{2},-y+\frac{1}{2},-z+1\right]$. The C11 $\cdots \mathrm{O} 1^{\text {iii }}$ distance of 3.3863 (17) A \AA [symmetry code: (iii) $\left.-x, y+\frac{1}{2},-z+\frac{3}{2}\right]$ may be regarded as an extremely weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bridge. The corresponding contact distances in compound (II) are almost identical. The oxazolidine moieties of (I) and (II) adopt the same envelope conformation, with atom C2 lying 0.479 (2) \AA (mean value) above the plane formed by atoms $\mathrm{C} 1, \mathrm{C} 3, \mathrm{O} 1$ and N 1 . The deviation of atoms $\mathrm{C} 1, \mathrm{C} 3, \mathrm{O} 1$ and N 1 from the ring plane [the mean values are $-0.035(1),-0.022(1), 0.022(1)$ and 0.035 (1) \AA, respectively] and the distance of atom C2 from this plane are identical within 3σ for the two structures.

organic compounds

Oxazolidine rings preferably adopt envelope conformations in the crystalline state, but with different atoms lying out of the plane. In the archetypal unsubstituted p-tosyl-1,3-oxazolidine (Gálvez-Ruiz et al., 2004), the O atom lies out of the molecular plane, a conformation typically found for p-tosyl-1,3-oxazolidine derivatives with only $\mathrm{Csp}{ }^{3}$ atoms and a CH_{2} group in the non-acetalic position α to the ring O atom. However, p-tosyl-1,3-oxazolidines with this CH_{2} group out of the molecular plane (as found for the present structures) are not unusual. Twisted five-membered rings or conformations with N or other C atoms out of the plane exist but are rare exceptions. Therefore, we assume that, in the present case, the envelope conformation is mostly influenced by the substitution pattern of the quarternary C atom in the position (C3) α to the N atom. A closely related envelope conformation was found for 3-(tert-butyloxycarbonyl)-2,2-dimethyl-4-methyl-1,3-oxazoli-dine-4-carbaldehyde, which has a comparable substitution pattern in the C 3 position (Avenoza et al., 2003). The absolute value of the $\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$ torsion angle is $156.63(13)^{\circ}$ in (I) and 156.80 (13) ${ }^{\circ}$ in (II), which are also identical within 3σ

Figure 1

The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level and H atoms are drawn as circles of arbitrary radii.

Figure 2
The asymmetric unit of (II), showing the atom-labeling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level and H atoms are drawn as circles of arbitrary radii.
and indicate a gauche orientation of the carbonyl group $(\mathrm{C} 4=\mathrm{O} 2)$ with respect to the methyl group at atom C 5 . Obviously, this orientation of the $\mathrm{C} 4=\mathrm{O} 2$ carbonyl group leads to a minimization of the interaction of carbonyl atom O 2 with atoms O 1 and O 4 .

Experimental

For the preparation of (I) and (II), under an inert atmosphere, $\mathrm{PhI}=\mathrm{NTs}(15 \mathrm{mmol}, 5.598 \mathrm{~g})$ was added in small portions over a period of 3 h to a solution of (-)-2-tert-butyl-5-methyl-4H-1,3dioxine ($10 \mathrm{mmol}, 1.562 \mathrm{~g}, 92 \%$ ee) or (+)-2-tert-butyl-5-methyl-4 H^{-} 1,3-dioxine (91% ee), respectively, and CuOTf benzene complex $(0.503 \mathrm{~g}, 10 \mathrm{~mol} \%)$ in dry tert-butyl methyl ether $(25 \mathrm{ml})$. After complete conversion (monitored by gas chromatography), the solvent was evaporated under reduced pressure and the oily residue was purified by column chromatography (silica, light petroleum/diethyl ether, 5:1) to afford a diastereomeric mixture (70:30) of the oxazolidinecarbaldehyde as a colorless solid. Recrystallization from tertbutyl methyl ether led to single crystals of the main diastereomers, (I) and (II) (m.p. 398-399 K). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.84[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.63\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.44\left(s, 3 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}_{3}\right), 4.04\left(d, 1 \mathrm{H},{ }^{2} \mathrm{~J}=\right.$ $\left.10.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}\right), 4.10\left(d, 1 \mathrm{H},{ }^{2} J=10.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}\right), 5.44(s, 1 \mathrm{H}$, $\mathrm{O}-\mathrm{CH} R-\mathrm{N}), 7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$ aromatic), $7.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$ aromatic), $9.87(s, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.6$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 21.5\left(1 \mathrm{C}, \mathrm{Ph}-\mathrm{CH}_{3}\right), 26.3\left[3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 38.0 \quad[1 \mathrm{C}$, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 71.9\left(1 \mathrm{C}, \mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 73.2\left(1 \mathrm{C}, \mathrm{OCH}_{2}\right), 100.5(1 \mathrm{C}, \mathrm{O}-$ $\mathrm{CH} R-\mathrm{N}$), 127.5 ($2 \mathrm{C}, \mathrm{C} 2+6$ aromatic), 129.9 ($2 \mathrm{C}, \mathrm{C} 3+5$ aromatic), 138.0 (1C, C1 aromatic), 144.0 (1C, C4 aromatic), 198.4 (1C, CHO). IR (ATR, cm^{-1}): $\delta 2962,2927,2852,1737,1451,1334,1259,1160$, 1090, 1012, 812, 705, 665, 594, 547. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$: C 59.05 , H 7.12, N 4.30%; found: C 59.03 , H 7.07, N 4.28%. For (I): $[\alpha]_{D}^{20}=-76.1$ (c 2.95, CHCl_{3}); for (II): $[\alpha]_{D}^{20}=+73.03(c$ $1.65, \mathrm{CHCl}_{3}$).

Enantiomorph (I)

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$
$M_{r}=325.41$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.5175$ (6) \AA 。
$b=11.3011$ (8) \AA
$c=17.0503$ (13) \AA
$V=1641.2(2) \AA^{3}$
$Z=4$
$D_{x}=1.317 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-II diffractometer
ω scans
Absorption correction: integration (X-RED; Stoe \& Cie, 2004)
$T_{\min }=0.923, T_{\max }=0.980$
9743 measured reflections
3518 independent reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.059$
$S=0.95$
3518 reflections
205 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0374 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$

Mo $K \alpha$ radiation

Cell parameters from 16746 reflections
$\theta=2.2-27.0^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Plate, colorless
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

3192 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-14 \rightarrow 14$
$l=-21 \rightarrow 21$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \operatorname{SHELXL97} \\
& \text { Extinction coefficient: } 0.0103(10) \\
& \text { Absolute structure: Flack }(1983), \\
& \quad 1486 \text { Friedel pairs } \\
& \text { Flack parameter: }-0.04(5)
\end{aligned}
$$

Enantiomorph (II)

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S} \\
& M_{r}=325.41 \\
& \text { Orthorhombic, } P 2_{1} 2_{1} 2_{1} \\
& a=8.5276(6) \AA \\
& b=11.3090(11) \AA \\
& c=17.0624(12) \AA \\
& V=1645.5(2) \AA \\
& Z=4 \\
& D_{x}=1.314 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 17010 reflections
$\theta=1.9-27.8^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Plate, colorless
$0.35 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection
Stoe IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED; Stoe \& Cie, 2004)
$T_{\text {min }}=0.941, T_{\text {max }}=0.971$
13910 measured reflections
3772 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.076$
$S=1.02$
3772 reflections
205 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0579 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$

The methyl H atoms were constrained to an ideal geometry, with $\mathrm{C}-$ H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about the $\mathrm{C}-\mathrm{C}$ bonds. All other H atoms
were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$.

For both compounds, data collection: $X-A R E A$ (Stoe \& Cie, 2004); cell refinement: X - $A R E A$; data reduction: $X-R E D$ (Stoe \& Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1192). Services for accessing these data are described at the back of the journal.

References

Avenoza, A., Busto, J. H., Corzana, F., Jiménez-Osés, G. \& Peregrina, J. M. (2003). Tetrahedron, 59, 5713-5718.

Evans, D. A., Bilodeau, M. T. \& Faul, M. M. (1994). J. Am. Chem. Soc. 116, 2742-2753.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flock, S. (2003). Dissertation, University of Kassel, Germany.
Flock, S. \& Frauenrath, H. (2001). Synlett, pp. 839-841.
Flock, S., Frauenrath, H. \& Wattenbach, C. (2005). Tetrahedron: Asymmetry, 16, 3394-3399.
Frauenrath, H., Reim, S. \& Wiesner, A. (1998). Tetrahedron: Asymmetry, 9, 1103-1106.
Gálvez-Ruiz, J. C., Jaen-Gaspar, J. C., Castellanos-Arzola, I. G., Contreras, R. \& Flores-Parra, A. (2004). Heterocycles, 63, 2269-2285.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2004). X - A REA (Version 1.211) and X-RED (Version 1.06). Stoe \& Cie, Darmstadt, Germany.
Tanner, D. (1994). Angew. Chem. Int. Ed. Engl. 33, 599-619.

